Advanced Software for State-wide Integrated Sustainable Transportation Monitoring & Evaluation (ASSIST-ME)

Kaan Ozbay
Professor
Rutgers Intelligent Transportation Systems Laboratory (RITS)
Department of Civil & Environmental Engineering
Rutgers, The State University of New Jersey

June 2011
ASSIST-ME

Advanced Software for State-wide Integrated Sustainable Transportation System Monitoring and Evaluation

• GIS-based **post-processing tool** to analyze, summarize and visualize transportation planning model output

• Central tool to compile, analyze, and compare multiple datasets
 – Model data (NJRTM-E, NYBPM & potentially others)
 – Real-world data (many)

• Does not require in-depth knowledge of the model(s) or expertise in GIS

• Customizable to agency/organization needs or datasets
ASSIST-ME Framework

Model Output
- 8 million residents, 3.6 million jobs in Northern New Jersey
- 15.3 million people in adjoining areas
- 23,000 miles of roads
- 250 bus routes, 12 rail lines

Field Data

End User Application

Analysis

Reports

Output Visualization

\[
\frac{PVB}{PVC} = \sum_{i} \frac{B_i}{(1 + d)^t} \quad \frac{C_i}{(1 + d)^t}
\]
Current ASSIST-ME Functionalities

ASSIST-ME currently consists of the following modules:

- **Visualization of data** such as speed, vehicle miles traveled, volume / capacity (V/C) ratio
- **Analysis of OD Demand** between various zones in the network
- **Analysis of travel times and paths** on a loaded network
- **Creation of Reports** and selective exporting of analyses
- **Benefit-cost Analysis** for Capital Investment Projects
ASSIST-ME Data Visualization & Analysis

- Microscopic Statistics Calculated
 - Vehicle Miles Traveled (VMT)
 - Average Speed
 - Average Volume-to-Capacity (V/C) Ratio
 - Person Miles Traveled (PMT)
 - Vehicle Hours of Delay (VHD)

- Visualization using a color scheme based on metrics (speed, V/C, etc.)

- Various analysis/selection methods
 - Manual (link)
 - Network-wide
 - County
 - Route
 - Functional Class
Manual Selection of Links

NYMTC NYBPM Network
Selection by County

NYMTC NYBPM Network
Selection by Route
Selection by Functional Class
ASSIST-ME – Network Comparison

NJTPA NJRTM-E Network
ASSIST-ME – OD Analysis

• Time
 – Year (based on model forecasts)
 – Time of the day (AM, PM, Midday, Night)

• Mode of travel
 – SOV, HOV, Truck, etc.

• Feature Selection
 – Manually selected ODs
 – ODs located within a county
 – Inter-county trips
OD Analysis Visualization
ASSIST-ME – Travel Path Analysis

• Travel times, costs and travel paths are analyzed using model output

• The output contains travel times on each link, the possible paths between the chosen set of ODs can be calculated from the k-shortest path algorithm

• Various OD selection options
 – Manually selected ODs
 – ODs located within a county
 – Inter-county trips
 – Network-wide OD selection
ASSIST-ME – Path Visualization & Analysis

NYMTC NYBPM Network
Shortest Path Comparison in Two Scenarios
ASSIST-ME Customized Analysis - NJCOST

<table>
<thead>
<tr>
<th>Year 2015</th>
<th>Operating</th>
<th>Congestion</th>
<th>Accident</th>
<th>Air Pollution</th>
<th>Noise</th>
<th>Maintenance</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVED</td>
<td>$15,577,075.39</td>
<td>$46,834,236.73</td>
<td>$9,358,805.89</td>
<td>$636,420.76</td>
<td>$18,153.53</td>
<td>$21,385,811.12</td>
<td>$93,810,503.42</td>
</tr>
<tr>
<td>BASE</td>
<td>$15,574,666.10</td>
<td>$46,913,058.14</td>
<td>$9,355,031.91</td>
<td>$636,158.37</td>
<td>$18,146.66</td>
<td>$21,331,512.70</td>
<td>$93,828,573.88</td>
</tr>
<tr>
<td>Mid-day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVED</td>
<td>$24,278,591.35</td>
<td>$263,641,880.66</td>
<td>$14,585,271.37</td>
<td>$1,006,926.74</td>
<td>$27,002.59</td>
<td>$46,354,673.40</td>
<td>$349,894,346.11</td>
</tr>
<tr>
<td>BASE</td>
<td>$24,277,092.46</td>
<td>$263,266,053.35</td>
<td>$14,579,553.91</td>
<td>$1,006,614.02</td>
<td>$27,001.88</td>
<td>$46,267,702.31</td>
<td>$349,424,017.93</td>
</tr>
<tr>
<td>PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVED</td>
<td>$19,624,014.23</td>
<td>$126,352,376.78</td>
<td>$11,297,529.54</td>
<td>$826,388.30</td>
<td>$22,475.82</td>
<td>$10,892,591.39</td>
<td>$169,015,376.06</td>
</tr>
<tr>
<td>BASE</td>
<td>$19,622,275.78</td>
<td>$125,297,335.65</td>
<td>$11,290,918.34</td>
<td>$825,668.65</td>
<td>$22,461.45</td>
<td>$11,105,799.94</td>
<td>$168,164,459.81</td>
</tr>
<tr>
<td>Night</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVED</td>
<td>$12,063,073.17</td>
<td>$265,011,270.17</td>
<td>$10,330,251.10</td>
<td>$575,804.35</td>
<td>$20,779.25</td>
<td>$75,996,035.93</td>
<td>$363,997,213.97</td>
</tr>
<tr>
<td>BASE</td>
<td>$12,060,334.67</td>
<td>$268,336,008.35</td>
<td>$10,310,270.01</td>
<td>$574,800.09</td>
<td>$20,764.81</td>
<td>$77,054,093.84</td>
<td>$368,356,271.77</td>
</tr>
</tbody>
</table>

Daily Benefit

\[
\frac{PVB}{PVC} = \frac{\sum_{t=0}^{T} \frac{B_t}{(1 + d)^t}}{\sum_{t=0}^{T} \frac{C_t}{(1 + d)^t}}
\]

Note: This is based on a specialized cost study for Northern New Jersey. For more information see Ozbay et al., “Cost of Transporting People in New Jersey, Phase 2” NJDOT/FHWA Report No. FHWA/NJ-2007-003 (2007).
ASSIST-ME – Report Generation
Ongoing & Future Enhancements to ASSIST-ME
Field Data in ASSIST-ME

- Wealth/underutilization of real field data
 - Sensors/detectors
 - Volume counts & Toll Plaza data
 - GPS/Probe vehicle data (INRIX – Google)
 - Weigh-in-motion (WIM) data
 - Bluetooth, ETC-readers (TRANSMIT)

- Centralize all relevant field data with an easy-to-use user interface

- Field-data/Model-data comparisons
 - Connect with NJRTM-E model output to compare or “fill in the blanks”
NJDOT Volume Counts

Roadway Information and Traffic Counts

Traffic Count Locations:
- Classification 48hrs
- Volume 48hrs
- Continuous Volume
- Weigh-in-Motion
- Intersection Count

Continuous Volume: This type of station counts the number of vehicles hourly for 365 days / year.

Weigh-in-Motion (WIM) station captures volume, classification, and weights of vehicles for 365 days / year.

Intersection Count: It is a turning movement count to analyze traffic flows at intersections. A typical turning movement count will include AM (7am to 9am), Noon (11am to 1pm) and PM (4pm to 6pm) peak counts.

Copyright © State of New Jersey, 2002-2010

[Map Image]
NYSDOT Traffic Data Viewer
INRIX Speed Data on NJRTM-E
ASSIST-ME/WIM

Long-Term Monitoring System

The WIM system detects a heavy truck and triggers the network.

Records are accessed remotely, downloaded and analyzed.

Sensor Network

The LVDT-Cable system and strain transducers record and store records.

Flowchart:
- Load Data
- Select Data Type: Raw ASCII CLA
- Select Station(s): Single, Double, Route-based, Multiple
- Select Type of Analysis
 - Data Filters On/Off
 - Counts
 - Class
 - Comparison
 - Duration
 - Graphs
 - Tables
 - Reports
ASSIST-ME/WIM Interface

- Check details and set the station
- Select type of analysis and the date
- Select the station from the map

Excel Report

Results in the form of table and graph
ASSIST-ME/WIM Output

Large Truck Weekday Volume 2009, I-95, MP 1.2

Variability of Large Truck Weekday Volume -2009 I-95, MP 1.2, SB

Normalized Time Distribution by Vehicle Category, I-95, MP 1.2, SB

Durational Graph NJ-31, NB

ASSIST-ME/WIM Output

Large Truck Weekday Volume 2009, I-95, MP 1.2

Variability of Large Truck Weekday Volume -2009 I-95, MP 1.2, SB

Normalized Time Distribution by Vehicle Category, I-95, MP 1.2, SB

Durational Graph NJ-31, NB
Cross-model Comparison & Field Data Integration

Field Data (Example)

- Avg. Speed: 25 mph
- V/C: 0.95
Applications of ASSIST-ME

- Currently adapted to NJRTM, NJRTM-E, NYBPM
 - Being used by NJDOT, NYMTC, NYSDOT, NJ Transit

- Critical studies using ASSIST-ME:
 - Evaluation of TIGER projects for NJDOT
 - Obtained benefit-cost analyses in a time span of 2-3 weeks
 - USDOT New York City Freight Demand Initiative
 - Post-processed NYBPM output of time-of-day freight shift modeling
 - Evaluated impacts in terms of network-link changes and path/travel time changes for trucks bound for Manhattan from all origins
 - Evaluation of Economic Impact of various road improvements in New Jersey
 - Evaluated the benefits of five long term capital improvement projects proposed by NJDOT
ASSIST-ME Future

• ASSIST-ME is conceived/designed as a central tool for traffic engineers and planners
 – Visualize/compare model output
 – Post-process output for economic analysis
 – View/use real data in conjunction with model data for planning

• Future of ASSIST-ME is open, and should suit the projected needs of planners to assist and encourage using all potential data sources in the decision-making process
Thanks for Listening

http://rits.rutgers.edu

For more information please contact:
Kaan Ozbay, kaan@rci.rutgers.edu