New York City DOT Advanced Intersection Signal Control Systems

Presenters: Rami Khashashina, P.E., Administrative Engineer, NYCDOT Amar Ali, PMP, Director, TransCore ITS, LLC

Agenda

- Introduction
- NYCDOT Traffic Control System TransSuite[®]
- Centralized Adaptive Control
- Green Cabinet
- Video Analytics

Introduction

- Largest metro area in the U.S.
- Over 13,600 signalized intersections
- State of the art Traffic Control Center
- Large ITS systems and subsystems: DMS, CCTV, RFID (Travel Time), Transit Signal Priority, Connected Vehicles
- Sophisticated intersection control systems
- Centralized Adaptive Control
- Green Cabinet
- Video Analytics

TransSuite°

TRAFFIC SIGNAL CONTROL

Traffic Control System

TransSuite

ADAPTIVE SIGNAL OPERATIONS

INSIGHT MAINTENANCE MANAGEMENT SYSTEM

NYCDOT TransSuite Modules

TransSuite Traffic Control System

- Reliable signal control to 13,600+ NYC intersections
 - Fully supports NYCDOT standard-based traffic controllers (ASTC)
 - Multiple traffic control modes
 - Controller database management
 - Real-time split monitor
 - Real-time time-space diagram
- Transit Signal Priority
- Traffic Responsive (part of base system)
- Traffic Adaptive (module available)
- Alerts and Notifications detailed event log and notifications
- Full NTCIP support for controllers and legacy controller support

≈ ≈ ⊞ 🛍					Intersectio	n control	ller ID: 1 Colfax	and Simms - Timin	e						
ions 🕶															
ailed Summary	ID	Timing Status	Main Street	Cross Street	Description	De	esired Mode	Actual Mode	Desired Plan	Actual Plan	Comm Sta	tus Comm	Mode	Hardware type	
Components <	•1	coordinated	Colfax	Simms	Colfax and Simr	ns nor	irmal	local time-of-day	0	20	online	online		Econolite ASC/2	
g		'iming													
g Plans		Cycle counter Peference coun		nter St	Start Time		Plan cycle	Plan cycle Actual cycle		Actual Of	fsot Ar	tive Phases	Phases Coord max mode		
Ion Detectors	10	1	93 Au		ig 13, 2019 3:02:53 PM		150	150	142	142		Ph7 m		max inhibit	
Summary	Ph	ase Status													
Consistency			1	2	3	4	5	6	7	8		10	11	12	
Properties	Pł	nase State	•	•	•	•	•	•	•	•					
ats	CL	irr Cycle (sec)	6	60	13	0	9	58	17	0					
in particular in the second seco	La	ist Cycle (sec)	16	51	14	46	0	74	23	37					
	Sp	olit Times (sec)	23	57	20	50	15	65	30	40					
mmunication Trace	м	in Time (sec)	4	6	4	12	4	6	4	12					
	M	ax Time (sec)	17	53	14		9	61	24						
Functions	Pe	eds	٠	*	*	٠	*	*	*	•					
ogger	Ov	erlaps													
						A B			c			D			
/Occupancy	Ve	Veh Overlap State				ф ф			☆			☆			
rderr	CL	irr Cycle (sec)		9			, o		0		0		0		
	Last Cycle (sec)				0			0		0		0	0		

ATMS Map

- Supports ITS device layers
- Regional and local views
- Overview of system performance
- Centralized access to field devices
- Center-to-Center support
- Unlimited device display
- Support for OpenStreetMap, Bing or partner GIS

ATMS Explorer Diagrams

- User-designed system views
- Dynamic information in real time
- Direct control of devices
- Windows graphic formats supported
- Intersection, section, or network views

Diagram Elements

- Intersection(s)
- Detectors (system and actuated)
- Pedestrian Control
- Section Control
- Signs, Cameras, File Access, and Hyperlinks

System Status & Performance Measures (Reporting & Dashboards)

0 - + x

- Ongoing operational status and performance reported by customizable dashboard
- Build your dashboard with widgets of interest
- See operational conditions at a glance, or click on links to dive in and take action
 - some dashboard widgets bring up lists of relevant intersections for details/troubleshooting
- Set alarms/alerts on certain operational conditions
- Save to your custom view

TransSuite Travel Information System

- Variable Message Sign (VMS) management
 - Create and edit messages
- WYSIWYG viewing
- NTCIP supported
 - full color & graphics, including display of Arabic text
- Word dictionary
- Automated scheduling
- Sign plans
- Hierarchical control
- Integration with Automated Message Display

TransSuite Event Management System (EMS)

- Monitors incidents automatically detected by the Traffic Management System or manually entered by system users
- Used for:
 - Construction events
 - Planned special events
 - Incidents (manual, automated, external)
 - External incidents from 3rd Party
- CAD / 911
- Logs and displays all operator and system actions
- Standard reports for incident data

Actio												III - 11
ģ	Event ID	Time	Stop	Location	¢ Type	Reported Note	City	County	Reported By	Confirmed By	Direction	Last Updated
ଚ	Flood Warning	11/14/2018 4:55 PM	11/17/2018 1:00 AM	22ND ST CST 7TH ST CST	Flood		St Louis,MO	St Louis (city),MO	Operator/Radio	tcore/tomusiakl	NE	11/14/2018 4:58 PM
₫	Concert LTS	11/20/2018 11:14 AM	11/20/2018 3:54 PM	I-270 EB AT MCDONNELL BLVD	SPECIAL EVENT		Hazelwood,MO	St Louis,MO	Operator/Tour	tcore/tomusiakl	N	11/20/2018 3:55 PM
₫	Concert	11/16/2018 10:44 AM	11/16/2018 12:41 PM	CHURCH ST SB BEFORE I-70	SPECIAL EVENT		Wentzville,MO	St Charles,MO	Operator/Tour	tcore/tomusiakl	E	11/16/2018 12:42 PM
₫	Campaign LTS	12/10/2018 8:27 AM	12/12/2018 8:25 AM	I-170 SB BEFORE BRENTWOOD BLVD	Campaign		Clayton,MO	St Louis,MO	Operator/Radio		E	12/12/2018 8:26 AM
1	Amber test	12/07/2018 8:12 AM	12/07/2018 9:05 AM	BUS 55 NB PAST I-55	Amber Alert	Test	New Madrid,MO	New Madrid,MO	Operator/Tour		E	12/07/2018 9:06 AM
	Amber alert	10/30/2018 5:47 PM	12/07/2018 8:33 AM	BUS 55 NB PAST I-55	Amber Alert	fghfgh	New Madrid,MO	New Madrid,MO	Motorist Assist	tcore/lewisj	Ε	12/07/2018 8:34 AM
	2019-08-19-0003	08/19/2019 1:46 PM	08/19/2019 2:46 PM	I-70 EB AT LAKE ST LOUIS BLVD	Stalled Vehicle		St Charles,MO	St Charles,MO	Operator/CCTV		NE	08/19/2019 1:49 PM

Alarm System

- Manage error messages and alerts for users
 - System hardware
 - Field hardware
 - Communication
 - User access
- Send email/text messages to designated staff
- Use Alarm Codes and Types to filter emails to recipients

TransSuite Centralized Transit Priority (TSP)

- Central TSP services and communication to the controllers are provided by NYCDOT Traffic Control System – TransSuite
- 2,300+ intersections across all 5 boroughs are TSP-enabled
- Plans to expand and study up to 8,000 intersections for TSP, enable TSP at up to 6,000 Intersections

TransSuite Connected Vehicle

- Implemented for NYCDOT Connected Vehicle Pilot Program
- TransSuite has a key role in the CV environment:
 - RSU Management
 - Onboard Unit Data Collection
 - MAP and TIM Management
 - SPaT Message Generation

NYC Challenges:

 Oversaturated traffic, heavy pedestrian volume, grid/arterial/diamond interchanges/CBD, and 12,000+ intersections

Design Constraints:

- Centralized control
- Support for Transit Signal Priority
- Support NEMA and interval-based timing
- Prioritize pedestrian phasing (LPI, minimum crossing time)
- Non-intrusive detection
- Build upon existing ITS infrastructure
 - NYC TCS, Wireless Network, and ASTC

- NYC TCS Plug-in
- Centralized
 - NTCIP Based
- Cyclic
 - Cycle/offset/split
- Multi-Regime
 - Undersaturated
 - Oversaturated
- Variable Objective
 - Delay Minimization
 - Queue Management
 - Progression
 - Interchange Control

Active Traffic Management (ATM)

- Midtown-In-Motion (MIM)
 - With operator override

Smart Lights

- Diamond Interchange
- Arterial
- Intersection Clusters

Midtown-in-Motion

- Developed following approach to accommodate extremely complex grid network
- Hierarchical Control
 - Level 1 Strategic area-wide control
 - Implemented by Avenue, rebalanced traffic being delivered to the zone, used library of carefully developed plans
 - Level 2 Tactical control
 - Implemented at intersection level, complimentary to level 1, balanced queueing and minimized gridlock condition
 - With Operator-in-Loop option
- Performance since 2011
 - ~60% of the time system prevented travel time deterioration
 - ~15% average travel time savings

Smart Lights

- Challenge:
 - Queueing and spillbacks
 - Varying traffic pattern
 - Signal phasing constraints
- Treatment:
 - Splits optimization for varying traffic
 - Utilize available capacity
 - Metering inflow when warranted
- Important Metrics/Measures:
 - Measure of Congestion by Occupancy
 - Flow/Occupancy Regimes

Field Performance

Green Cabinet

Program Goals

- Reduce power consumption for intersection operation
 - Energy efficiency of Low Voltage LED signal heads
 - Reduced operating costs
- Improve the safety of field wiring
 - Low Voltage Controller cabinet to signal heads
 - Improve cabinet safety for maintenance personnel
 - Limited exposure to high voltages
- Evaluate the application of the Advanced Transportation Controller Cabinet (ATC 5301) standards
 - Development of the procurement specifications for the next generation of controllers for New York City

Background

- The current traffic controller (initial procurement ~2002)
 - Replaced the electromechanical controllers
 - Compact, cost-efficient design
 - Increased reliability and ease of maintenance
- Requirements & Design based on:
 - *Evolving* National Advanced Transportation Controller (ATC) standards
 - NY State cabinet specifications
 - Incorporate NEMA TS2 Type 1 Serial Cabinet standards
 - Use CALTRANS/NYS cost effective, simple plug-in monitoring unit
 - Low cost NEMA/NYS Load Switches/Flashers (10 AMP 120 VAC)
 - Optimized for use of 6 Load Switch and 12 Load Switch configurations

- Designed for wireless connectivity
 - NYCWiN (~circ 2008) and now using AT&T FirstNet/Sprint backup
 - NTCIP support for efficient wireless communications
- Adapted for *Connected Vehicle Operations* (SPaT)
- Support TSP/EVP and Adaptive Control (Midtown-in-Motion)
- ~14,000 currently installed and online
- Multiple vendors approved for deployment

Green Cabinet Adaptations

- Operation using 48 Volts DC Operation
 - LED signal heads 8 watts
- Compact Cabinet design Based on ATC 5301
 - High Density Switch Packs 6 circuits, 1" of rack space
 - Serial Interface Unit (SIU) serial cabinet design
 - Improved cabinet monitoring system (CMU)
 - Current & voltage monitoring \rightarrow proactive maintenance
 - Redundant 48 VDC Power Supplies
 - Limited operation during main supply failure
- Partial Adaptation
 - Controller remained unchanged
 - Plugs into the cabinet outlet (120 VAC)
 - Modified controller firmware (Oriux)
 - Supports the ATC standard CMU and SIU

Examples of ATC 5301 Efficiencies/Density

<u>Typical HDSP</u> equivalent to 2 traditional load switches

<u>Typical Cabinet Monitoring Unit (CMS)</u> communicates with the HDSP, looks for sequence errors, conflicts, monitors currents and voltages

Project Approach

- Outfitted 10 cabinets with power monitors
- Collected Cabinet Power consumption before
- Install Low Voltage/Low Power cabinets at sample locations
- Collect Cabinet Power consumption after
- Did not go according to plan -
 - Discovered many issues/challenges with the standards and signal head design

Some Complications and Challenges

- ATC5301 standards were a moving target Finalized 2021/2022
 - Changes affected cabinet design
- Major issues with the 48 VDC signal displays (Pedestrian and Vehicle)
 - Signal Head Failure mode
 - Was ok for 10-amp 120 VAC circuits but not for 48 VDC 2-amp operation
 - Vendor had to modify their circuitry
 - Need an updated signal standard for LED signal heads *Existing Standards insufficient*!
 - Inrush current for pedestrian signals with down counters
 - Current required during the "on" time was 3x to 4x the specified power consumption
 - Needed significantly larger 48-volt supply (12 amps) than calculated (3 amps)
 - Fuses required for each circuit to support failsafe flash on signal head failure
- Need for backup 48 VDC supplies; no 48 volts = dark signals
 - Needed a power monitoring and transfer module

Where Are We Now?

- Vendors' device modifications are ongoing
- We have alternative power supplies that run reliably with higher current power supply
- Power savings are real, but not as large as expected
 - ~10% average power reduction across 4 sample intersections
 - One-Way/Two-Way intersection 6 Signal heads, 4 Walk/Don't Ped. heads, 4 count-down Ped. heads.
- Evaluating final cabinet subassemblies (fuse panels etc.)
- Participating in the modifications to the standards lower wattage signal heads (ITE), backup (flashing) operation – backup 48-volt supply (ATC)
- USDOT funding ATC 5301 updates and supporting development of a National Standard for LED signals for Low Voltage Op.
- City is evaluating the impact of changing to 48 VDC operation,
- Additional Field Trials to evaluate vendor device improvements

Next Steps

- Development of procurement specifications
 - Incorporating changes to standards and lessons learned
 - Upgrade the specifications for the various plug-in devices based on lessons learned
 - Evaluate additional LED signal heads and pedestrian signals
- Upgrade TCS to retrieve advanced diagnostic data proactive maintenance
 - Signal Head Current monitoring
 - Dispatch for repairs for signal outage before it causes flashing operation
- Upgrade Controller diagnostic display capabilities to eliminate the need for the costly Auxiliary Display Unit
- Add enhancements to the controller operation, including:
 - Over-the-air Software updates
 - Upgrade communications security (SNMPv3 with TLS 1.3)
 - Addition of a hardware security module for the Controller unit
 - Enhancements to firmware support for adaptive (MIM) and TSP operation for all modes
 - Support for Connected Vehicle applications (SPaT and RSU interface)

Summary

- We have been able to deploy a low voltage, lower power cabinet
 - There are savings expect more as heads become more efficient
- Switching to 48 VDC field operation still has challenges
 - Cabinet standard needs modification
 - Signal Heads need revised standards
- Switching to the ATC 5301 provides more capabilities
 - Proactive cabinet monitoring and repairs improves safety
 - Greater density means more circuits/capabilities in smaller cabinets
- The Low Voltage wiring offers a safer field environment and potentially lower maintenance costs

Video Analytics

Video Analytics

• Objective

 NYCDOT is evaluating ground-breaking roadway user detection & analytics (RUDA) systems to meet the Safety and Mobility goals from the OneNYC 2050 Plan and Vision Zero Action Plan

• Focus Areas

- Traffic Operations (real-time information)
- Traffic Safety (incident/crash/near-miss)
- Traffic Planning (data/historical/parking)

Use Cases

- Real-time monitoring for traffic operations
- Intersection turning movement counts
- Pedestrian data collection
- Near misses detection
- Roadway incident detection
- Parking

Video Analytics

- Completed industry scan in September 2022
 - Responses from 20 domestic and international vendors
 - Varied edge and central computing systems
- Developed technical specifications for Video Analytics System with industry scan knowledge

Technical Requirements

- Camera Hardware & Software
- Video Analytics Software
- Edge Computing Device Hardware & Software
- Power and Grounding
- Environmental Specification
- Network and Security
- Maintenance
- Central Management
- Cost

Potential Use of Technology

- Procurement
- Deployment

Look Ahead / Next Steps

- Publish Request for Expression of Interest (RFEI)
- Pilot testing of RUDA systems
- Demonstration across 500+ signalized intersections within New York City

