

A Zero Emissions Fleet Transformation Starts at the Top

Presented by Craig Cipriano | National Director of Zero Emissions Mobility at STV

St\'

Craig Cipriano

- 34 years of public transit experience
- National Director of Zero Emissions (ZE) Mobility at STV Incorporated
- Past President of MTA Bus Company
 - Led transition to 100% ZE fleet by 2040

MTA BEB DEPLOYMENT Lessons Learned

- High energy consumption in cold weather limits range
- Bus reliability shows need for technology maturation
- On-street charger construction complicated, costly + slow

0013

ooter goes here

FELECTRICBU

Challenges

- Major infrastructure construction on a tight timeline
- Current battery range insufficient for many bus schedules
- Limited number of qualified vendors + bus models
- New power demand equivalent to a small city
- Charger installation in spaceconstrained depots
- Continued operation during power outages

STV's ZE Transformation Experience

- Zero emission master planning
- Vehicle procurement support
 - Technical specifications
 - In-plant + QA inspections
 - Acceptance testing

St\'

Facilities + infrastructure

 Zero emission fleet transition master plan

> 2,400 buses + 1,000 paratransit vans

> > Fixed-route + on-demand service

Zero Emission ECOSYStem

Stv

Zero Emission Ecosystem

 Addresses technical complexity

St\'

- Facilitates organizational change management
- Helps deliver equitable + resilient ZE transformation

Principles

ZE Master Plans

Roadmap for ZE transition

 Methods to identify, procure + deploy zero emission fleets

Key elements

- Safety assessment
- Resilience analysis
- Equity/Environmental justice analysis
- Operation plan analysis modeling
- Fleet + facilities analysis
- Energy sourcing + power analysis
- Financial analysis
- Provisioning
- Technology opportunities
- O+M support

Performance + Evaluation of Electric bus Routes (PEER) PEER Tool + Energy Modeling

- ZEB bus route energy analysis + consumption tool
- Simulates each schedule block to determine energy consumption
 - Determines if available battery sufficient to complete each schedule block
- Battery life simulations
 - Estimates impact of future battery energy levels
- Creates roadmap for network redesign

	SAMPLE PEER EL	LECTRIC BUS OPER	ATIONS ANALYSIS
--	----------------	-------------------------	-----------------

WEEKDAY DRIVER BLOCK SUMMARY

DRIVER BLOCK	ROUTES DRIVEN	TIME FRAME	TOTAL DURATION	TOTAL MILES	TOTAL ENERGY REQUIREMENT
176457	18443, 18444	6:24am-8:35am	2:11 hours	95.95 mi.	125.21 kWh
176458	18443, 18444	6:28am-9:04am	2:36 hours	100 . 79 mi.	144.02 kWh
176459	18443, 18455	6:50am-9:16am	2:26 hours	123.63 mi.	187.65 kWh
176461	18443, 18474, 18483	6:49am-8:42pm	13:53 hours	109 . 74 mi.	272.77 kWh
176490	18443, 18444	2:30pm-12:05am	9:35 hours	106.35 mi.	469.39 kWh
176463	18444, 18443	6:04am-7:53am	1:49 hours	98.31 mi.	174.59 kWh
176464	18444, 18443	6:47am-8:53am	2:06 hours	98.31 mi.	150.44 kWh
176701	18456	5:57am-2:59pm	9:02 hours	150.53 mi.	406.15 kWh
176466	18443, 18444	7:09am-9:44am	2:35 hours	100 . 79 mi.	119.76 kWh

Presumes a standard battery on a 40-ft BEB has 414 "usable" kWh of energy

KEY:	GREEN: Can operate on	YELLOW: Possibly	RED: Requires route
	existing schedule	operate on existing schedule	restructure or on-route charging

- Needs of a full ZE fleet vastly different from needs during a pilot program
- Complexity + expense of installing charging infrastructure becoming clear
- Ability to get the amount of electricity needed from power company

Enablers

PMO Structure

Program management plan

- Coordinated approach
- Demonstrated leadership commitment

Three-pronged approach

- Program Office
- Working Groups
- Steering Meetings

Change Management

- Implement change management process from the top
 - Prioritize driving change from organizational +
 workforce level

Organizational change management

- Safety awareness
- Resiliency
- Route redesign plans
- Training

Workforce development + change management

- Engage employees from the onset
- Upskill employees to advanced systems
- Training program, including safety training

Pathways

Stv

Vehicles

- Vehicle design track evolving marketplace
- Battery design/safety consideration
- Fleet replacement plan
- Fleet management

Facilities

- Retrofitting legacy depots
 - Significant space constraints
 - Ceiling height for pantographs big issue
 - Large footprint of charging +
 power infrastructure
- Designing new purposebuilt depots

stv

Power

- Power supply limitations
- Large power demand to charge ZE fleet
- Power resilience

ST\'

- Engage early with power suppliers + utility regulators
 - Suppliers: install new capacity, negotiate rates
 - Regulators: charger installation

Containerised solution including: - 1.6MVA grid connection

Funding

Federal funding for ZE transformations

Discretionary programs

- USDOT RAISE, INFRA, SMART
- FTA Low-No, Bus/Bus Facilities, AIM
- DOE/EPA grants

Innovative finance programs

- State DOT infrastructure bank
- USDOT TIFIA

ST\'

Energy as a Service (EaaS)

Thank you

CONTACT:

Craig Cipriano National Director of Zero Emissions Mobility STV Incorporated T: 786.778.5978 E: craig.cipriano@stvinc.com

stv