Machine Learning Approach for Dynamic Bus Arrival Time Prediction

Sean X. He
Department of Civil and Environmental Engineering Rensselaer Polytechnic Institute

2023 ITS-NY 30 ${ }^{\text {th }}$ Annual Meeting
Rensselaer June 15th, 2023

Accurate bus arrival time predictions

- Enhanced passenger experience
- Time management and productivity
- Improved accessibility
- Increased ridership
- Efficient resource allocation
- Enhancing traffic management and urban planning
- Intelligent decision making

Bus Service Performance Metrics

Source: NEW YORK CITY TRANSIT \& BUS KEY PERFORMANCE METRICS, MTA (July 2022)

Bus On-Time Arrival Statistics

Route 1 - Central Avenue

- CDTA Data (09/2022 - 03/2023)
- 630K stop arrival data
- Workdays
- Route 1 - Central Ave

Bus Arrival Time Information

三

Route: 1

From: Wolf Rd \& Colonie Center
To: Madison Ave \& Green Street

Next Buses
11:25 (In 13 min.)
(1)

11:55 (In 43 min.)
'(1)

12:25 (In 1 hr.)
12:55 (In 1 hr.)
13:25 (In 2 hr.)
13:55 (In 2 hr.)
14:25 (In 3 hr.)
14:55 (In 3 hr.)
15:25 (ln 4 hr.)
15:58 (In 4 hr.)
16:28 (In 5 hr.)

〕 Travelers' convenience

- plan their trips and minimize waiting times
\square Operational efficiency
- optimize schedules, reduce operational costs
— Equity
- disproportionately affect low-income and marginalized communities
- Transit ridership
- environmental benefits

Challenges in Accurate Bus Arrival Time Prediction

Bus Operations

- Route specific factors
- Passenger demand
- Accommodation for special needs
- Dwell time

Environment

- Traffic variability
- Weather conditions
- Dynamic events
- Traffic management decisions
- Influencing factors are uncertain and highly dynamic
- Accurate predictions rely on massive high-quality and reliable data
- Requires sophisticated algorithms and techniques

Machine Learning Based on Markov Process

Markov property: In the evolution of a Markov process, the current state depends only on the previous state and does not depend on the past
\(\left.$$
\begin{array}{|l|l|}\hline \text { Markov Process } & \text { Bus Arrival Process } \\
\hline \text { Current state } & \text { Arrival time at current stop } \\
\hline \text { Previous state } & \text { Arrival time at previous stop } \\
\text { Uncertainties in the } & \begin{array}{l}\text { Uncertainties in: } \\
\text { a. Traffic condition; } \\
\text { environment }\end{array}
$$

\hline b. Bus travel demand(dwelling time)\end{array}\right\}\) Pattern to be | learned by ML |
| :--- |

Learn the pattern!

Bus Arrivals as a Markov Process

Illustrative Example

If the bus arrives at stop 1 at 10:09, the probability of arriving at stop 2 at $10: 12$ is 0.1

Matrix size and discrete time interval are flexible to be adjusted

Uncertainties to be Learned

- Identifications of the trip, stop, schedule
- Arrival time at previous stop

> Using historical bus arrival data

Machine Learning Approach

- Supervised machine learning problem
- Label: the frequency of different arrival time intervals
- XGBoost is used in the case study of this research
- Extreme Gradient Boosting
- A scalable, distributed gradient-boosted decision tree (GBDT)
- Loss function: Mean Square Error (MSE)

Learning input

- Stop ID
- Type of trip
- Scheduled arrival time
"Actual arrival time at previous stop

Learning output

- The probabilities of arrival times at the stop
- One row in the transition matrix represented the probability mass function

Prediction Using the Learned Transition Matrices

To predict the arrival time of any stop \mathbf{N} from stop A, we multiply all transition matrices between stop A and stop N. Note: The result is a distribution

Framework

Case Study on Route 1

Directions:

East: Colonie Center to Downtown Albany West: Downtown Albany to Colonie Center

Data:

09/2022 - 03/2023, workdays
Features: stop, direction, schedule arrival time, actual arrival time, date

Discrete time interval:

1 minute

Settings

- Stops
- 37(long trip) / 30(short trip) for eastbound
- 29(long trip) / 28(short trip) for westbound
- Schedules
- 36(long trip) / 73(short trip) for eastbound
- 36(long trip) / 75(short trip) for westbound
- Discrete time interval: 1 minute
- Transition matrix
- Size $27^{*} 27$
- The rows and columns represent the arrival times that deviate the scheduled arrival time from -5 to 22 (actual - scheduled, minute)
- 1296(long trip) / 2117 (short trip) transition matrices for eastbound
- 1008(long trip) / 2025(short trip) transition matrices for westbound
- 630,000 stop arrival data for Route 1: 80% for training; 20% for testing

Results on the Training Set

Percentage in the acceptable range [-1,5]: 81.7\%

Results on the Testing Set

Results-Temporal Variation

Results—Spatial Variation: Eastbound

- Colonie Center to Downtown Albany
- Origin stop removed
- Larger variations for the later stops on the route
- Lowest variations at:
- Central Ave \& Osborne Rd
- Central Ave \& Yardboro Ave
- 1010 Central Ave

Results —Spatial Variation: Westbound

- Downtown Albany to Colonie Center
- Origin stop removed
- Larger variations for the later stops on the route
- Lowest variations at:
- Central Ave \& Henry Johnson Blvd

Benefits

- Minimal data requirement: Bus arrival data only
- Easy to transfer
- Uncertainties are well addressed by a machine learning model
- Anticipate the environment instead of simply reacting to observations in real time
- Flexible prediction information
- In the case study, expectation of arrival time is used for prediction
- The maximum likelihood and trust intervals can also be provided
- Flexible modeling of transition matrices as per operational needs
- Time intervals
- Could be simplified as transition vectors
- High accuracy

Acknowledgements

Collaborators:

Xiaoyu Ma, Jack Reilly, Calvin Young, Rich Fantozzi

Sponsors:

National Science Foundation where discoveries begin

Thank you!
 hex6@rpi.edu

