Machine Learning Approach for Dynamic Bus Arrival Time Prediction

Sean X. He

Department of Civil and Environmental Engineering

Rensselaer Polytechnic Institute

2023 ITS-NY 30th Annual Meeting

June 15th, 2023

Accurate bus arrival time predictions

- Enhanced passenger experience
- Time management and productivity
- Improved accessibility
- Increased ridership
- Efficient resource allocation
- Enhancing traffic management and urban planning
- Intelligent decision making

Bus Service Performance Metrics

Source: NEW YORK CITY TRANSIT & BUS KEY PERFORMANCE METRICS, MTA (July 2022)

Bus On-Time Arrival Statistics

- CDTA Data (09/2022 03/2023)
 - 630K stop arrival data
 - Workdays
- Route 1 Central Ave

Bus Arrival Time Information

< F	Route		Stop	o Details		
[Route: 1 From: Wolf Rd & Colonie Center To: Madison Ave & Green Street				
(Next	Buses				
	11:25	5 (In 13	min.)	\bigcirc		
	11:55	5 (In 43	min.)	\bigcirc		
	12:25	5 (In 1 h	nr.)			
	12:55	5 (In 1 h	nr.)			
<	13:25	5 (In 2 h	nr.)			
	13:55	5 (In 2 h	nr.)			
<	14:25	5 (In 3 h	nr.)			
	14:55	5 (In 3 h	nr.)			
	15:25	5 (In 4 h	nr.)			
	15:58	8 (In 4 h	nr.)			
	16:28	8 (In 5 h				
	2		: Colon thway l		n - Centra	Ave

Travelers' convenience

 plan their trips and minimize waiting times

Operational efficiency

• optimize schedules, reduce operational costs

Equity

 disproportionately affect low-income and marginalized communities

I Transit ridership

• environmental benefits

Challenges in Accurate Bus Arrival Time Prediction

Bus Operations

- Route specific factors
- Passenger demand
- Accommodation for special needs
- Dwell time

Environment

- Traffic variability
- Weather conditions
- Dynamic events
- Traffic management decisions

- Influencing factors are uncertain and highly dynamic
- Accurate predictions rely on massive high-quality and reliable data
- Requires sophisticated algorithms and techniques

HPOLYTECHNIC INSTITUTE

Markov property: In the evolution of a Markov process, the current state depends only on the previous state and does not depend on the past

Markov Process	Bus Arrival Process	
Current state	Arrival time at current stop	
Previous state	Arrival time at previous stop	
Uncertainties in the environment	Uncertainties in: a. Traffic condition; b. Bus travel demand(dwelling time)	Pattern to be learned by ML

Learn the pattern!

Bus Arrivals as a Markov Process

Uncertainties to be Learned

Using historical bus arrival data

Machine Learning Approach

HUL YTE CHVIC INSTITUTE

- Supervised machine learning problem
 - Label: the frequency of different arrival time intervals
- XGBoost is used in the case study of this research
 - Extreme Gradient Boosting
 - A scalable, distributed gradient-boosted decision tree (GBDT)
- Loss function: Mean Square Error (MSE)

Learning input	Learning output		
- Stop ID	The probabilities of arrival times at the		
- Type of trip	 Stop One row in the transition matrix represented the probability mass function 		
Scheduled arrival time			
Actual arrival time at previous stop			

HOLNTECHNIC INSTITUTE

To predict the arrival time of **any stop N** from stop A, we multiply all transition matrices between stop A and stop N. **Note**: The result is a **distribution**

Framework

Case Study on Route 1

Directions:

East: Colonie Center to Downtown Albany West: Downtown Albany to Colonie Center

Data:

09/2022 - 03/2023, workdays

Features: stop, direction, schedule arrival time, actual arrival time, date

Discrete time interval:

1 minute

Settings

- Stops
 - 37(long trip) / 30(short trip) for eastbound
 - 29(long trip) / 28(short trip) for westbound
- Schedules
 - 36(long trip) / 73(short trip) for eastbound
 - 36(long trip) / 75(short trip) for westbound
- Discrete time interval: 1 minute
- Transition matrix
 - Size 27*27
 - The rows and columns represent the arrival times that deviate the scheduled arrival time from -5 to 22 (actual scheduled, minute)
 - 1296(long trip) / 2117(short trip) transition matrices for eastbound
 - 1008(long trip) / 2025(short trip) transition matrices for westbound
- 630,000 stop arrival data for Route 1: 80% for training; 20% for testing

Results on the Training Set

Percentage in the acceptable range [-1,5]: 81.7%

Results on the Testing Set

17

Results—Temporal Variation

- Light blue area represents
 70% trust interval
- Darker blue line: median
- Large variation during 8:00 – 19:00

Results—Spatial Variation: Eastbound

- Colonie Center to
 Downtown Albany
- Origin stop removed
- Larger variations for the later stops on the route
 - Lowest variations at:
 - Central Ave & Osborne
 Rd
 - Central Ave & Yardboro Ave
 - 1010 Central Ave

Results — Spatial Variation: Westbound

- Downtown Albany to Colonie Center
- Origin stop removed
- Larger variations for the later stops on the route
- Lowest variations at:
 - Central Ave & Henry Johnson Blvd

- Minimal data requirement: Bus arrival data only
 - Easy to transfer
- Uncertainties are well addressed by a machine learning model
 - Anticipate the environment instead of simply reacting to observations in real time
- Flexible prediction information
 - In the case study, expectation of arrival time is used for prediction
 - The maximum likelihood and trust intervals can also be provided
- Flexible modeling of transition matrices as per operational needs
 - Time intervals
 - Could be simplified as transition vectors
- High accuracy

Collaborators:

Xiaoyu Ma, Jack Reilly, Calvin Young, Rich Fantozzi

National Science Foundation WHERE DISCOVERIES BEGIN

Thank you! hex6@rpi.edu

