Estimating Truck Energy Consumption and Emissions Using Low-Resolution Speed Data

Sean X. He

Department of Civil and Environmental Engineering

Rensselaer Polytechnic Institute

2022 ITS-NY 29th Annual Meeting

June 17, 2022

Background

In 2019, heavy trucks in the US^{*}:

- Consumed 24% of the total energy used in transportation sector
- Emitted 30% of the total highway GHG emissions

* Transportation Energy Data Book: Edition 40—2022 (ORNL)

Tools and Software

- Fuel consumption and emissions of trucks can be measured by adopting models:
 - MOBILE--US Environmental Protection Agency
 - MOtor Vehicle Emission Simulator (MOVES) -- US Environmental Protection Agency
 - EMission FACtor (EMFAC) -- California Environmental Protection Agency
 - GREET Model Argonne National Lab
- Typical Data requirement:
 - Microscopic vehicle dynamics data

Data Resources

Advance Detection

-144

Challenges in Data Availability

Low-Resolution GPS data

ATRI data: 3 Moths, 51,142 trucks, >38 Million records

Imputation for Low-Resolution Speed Data

Mazzolo, A., 2017. Constrained Brownian processes and constrained Brownian bridges. J. Stat. Mech. Theory Exp. 2017, 23203.

8

•

Acceleration constraint

• "Bridging" the observed speeds,

Travel distance constraint

Imputation Process

considering:

$$\left|v_i^{\tau} - v_i^{\tau-1}\right| \le q, \qquad \forall \tau$$

Parameter *q* depends on engine power, terrain, road conditions, etc.

-qqRaw data / Imputed data Raw data q**-**q

A feasible region of speed trajectory

Speed-Affected Drift

First drift to ensure the bridging process converges to end speed

$$\lambda_i^{\tau} = \frac{v_i^* - v_i^{\tau-1}}{\delta t_i - \tau + 1}$$

$$v_i^{\tau} - v_i^{\tau-1} = \mu_i^{\tau} \cdot \delta \tau + r_i^{\tau} \cdot \delta \tau$$
$$\lambda_i^{\tau} \qquad \eta_i^{\tau}$$

Distance-Affected Drift

Second drift to factor travel distance constraint

$$\eta_i^{\tau} = \alpha \cdot \frac{\delta d_i - \delta \hat{d}_i^{\tau}}{\delta d_i + \delta \hat{d}_i^{\tau}}, \qquad \forall \tau = 1, 2 \dots, \delta t_i - 1$$

$$v_i^{\tau} - v_i^{\tau-1} = \mu_i^{\tau} \cdot \delta \tau + r_i^{\tau} \cdot \delta \tau$$
$$\lambda_i^{\tau} \qquad \eta_i^{\tau}$$

Model Summary

 $v_i^{\tau} = \max\{\min\{\hat{v}_i^{\tau}, v_i^{\tau-1} + q, upperb_i^{\tau}\} v_i^{\tau-1} - q, lowerb_i^{\tau}, 0\}$

Model Calibration

- Data: Second-by-second dataset 'NYCGPSData' (Holguín-Veras et al. 2010)
 - 9 truck routes
 - 313,386 second-by-second GPS data
 - Cover New York City area
- Objective: Kullback-Leibler divergence

$$D_{KL}(P||Q) = \sum_{x \in \chi} P(x) \log\left(\frac{P(x)}{Q(x)}\right)$$

Calibrated parameters:

Parameters				
Value	1.4	19.5	1.7	10.1

Holguín-Veras, J., Ozbay, K., Kornhauser, A., Shorris, A., Ukkusuri, S., 2010. Integrative freight demand management in the New York City metropolitan area. Kullback, S., Leibler, R., 2006. On information and sufficiency. the annals of mathematical statistics. Ann. Math. Stat. 79–86.

Calibration Results

Speed Comparison

- Randomized linear imputation (RLI)
- Randomized linear imputation with distance constraint (RLI-DC)
- Brownian bridge-based imputation (BBI)

Fuel Consumption Comparison

 Fuel consumption estimation per minute

• Fuel consumption per route

Barth, M., Younglove, T., Scora, G., 2005. Development of a heavy-duty diesel modal emissions and fuel consumption model.

Sensitivity Analysis

Mean Absolute Percent Error (MAPE) of Fuel consumption

ΜΑΡΕ	1-minute	2-minute	5-minute
RLI	10.19%	10.83%	11.94%
RLI-DC	7.11%	9.57%	10.71%
BBI	4.04%	4.11%	4.36%

Mean Absolute Percent Error (MAPE) of emissions estimation by EMFAC model

MAPE	CO2	CO	NOx	CH4
RLI	1.44%	9.38%	5.82%	4.28%
RLI-DC	1.96%	9.82%	6.32%	4.99%
BBI	1.00%	6.83%	3.47%	3.44%

Application—Truck's Energy Efficiency

Application—Spatiotemporal Emission Changes

July 16 07:12-07:17 AM

07:27-07:32 AM

07:42-07:47 AM

07:57-08:02 AM

08:12-08:17 AM

Data from Loop Detectors

Vehicle Classification and Re-Identification using Vehicle Signatures

Vehicle Re-ID Performance

15 stations, 200 Square miles in southern CA

Data from Cameras

Camera

I-90 WB Between Exits 2 and 1 (Fuller Road overpass)

Traffic closest to the camera is traveling west.

Show Image

Few-Shot Learning for Vehicle Re-ID

A simple but effective imputation technique for low-resolution speed data that:

- Provides accurate estimates of fuel consumption and emissions
- Does not require high volume data for model training
- Factors acceleration and travel distance constraints

Integrated with machine learning techniques for sparse data from

- Loop detectors using vehicle signatures
- Cameras using few-shot learning

Thank you! hex6@rpi.edu

Sponsors and collaborators:

National Science Foundation WHERE DISCOVERIES BEGIN

