

Bayesian Optimization for BEV Charging Station Placement by Activity-based Demand Simulation

Yuechen Sophia Liu

The BEV market share in the U.S.

The U.S. BEV market has been growing rapidly since 2011 with an average annual growth rate of 42.2% [DOE. Transportation Energy Data Book 2021].

By 2020, the U.S. had 1.14 million registered BEVs, accounting for less than 1% of vehicles on the road [IEA. Global EV Outlook 2021].

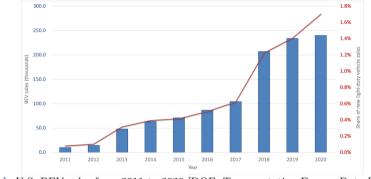


Figure 1: U.S. BEV sales from 2011 to 2020 [DOE. Transportation Energy Data Book 2021].

INTRODUCTION

Res

TIONS

DOLOGY

Case study 0000 Conclusion & future research plan

& A

Restriction on BEV adoption

Lack of charging infrastructure

- BEVs rely heavily on charging infrastructure.
 - BEVs have shorter driving ranges than gasoline vehicles.
 - BEVs have longer recharge times than gasoline vehicles.
- Current charging infrastructure is not enough.
 - There are less charging stations than gas stations.

	BEVs	Gasoline vehicles
Maximum driving range (miles)	405	765
Refill time	$30~\mathrm{min}$ - $12~\mathrm{h}$	$5 \min$
Number of refill stations in the U.S.	50,000	150,000

Table 1: Comparison of BEVs and gasoline vehicles

00

Research

RCH QUESTIONS

HODOLOGY

Case study

Conclusion & future research plan

Research questions

Charging station location problem (CSLP): optimize the placement of charging infrastructure.

- How to place charging infrastructure in an economically sustainable way?
- How to find the optimal placement of multiple station types?
- How to account for demand uncertainty in station placement?
- How to efficiently solve it when the problem is computationally expensive?

INTRODUCTION

Research •O

Research questions

Methodolo

CASE STU

Conclusion & future research pi

Q & A O

Research objectives

Charging station placement by activity-based demand

- Optimize the location and capacity of multi-type charging infrastructure to maximize the net present value.
- Include uncertainty in demand addressed by individual travel and charging behaviors.

Solve the problem by random embedding Bayesian optimization (REMBO)

- First time solving the CSLP by simulating the behaviors of a large number of agents in a fine-divided region.
- Quantitatively evaluate the uncertainty of the optimal values.
- Significantly improve computation efficiency than the sate-of-the-art.

Methol

Cas

Case study 0000 Conclusion & future research plan 000

Yuechen Sophia Li

Charging station placement model I

A study region is partitioned into J areas, each area can hold a set of charger types I.

Decision variable:

$$\mathbf{x} = \{x_{ij} | i \in I, j \in J\}$$

$$\tag{1}$$

 x_{ij} : the number of charger type i at area j.

Objective function:

$$\max_{\mathbf{x}} \mathbb{E}\left[g(\mathbf{x},\xi)\right]$$

s.t. $0 \le x_{ij} \le M_{ij}$
 $x_{ij} \in \{0, 1, 2, \cdots\}$ (2)

 $g(\mathbf{x}, \xi)$: net present value (NPV).

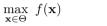
 $\xi :$ vector of random variables.

 $M_{ij}\colon$ maximum number of station type i at area j.

Simulation optimization problem

The optimization problem:

- $f(\mathbf{x}) = \mathbb{E}[g(\mathbf{x}, \xi)].$
- Θ is the search space.


Challenges of the problem:

- Evaluation of $f(\mathbf{x})$ is intractable.
- Dimension of **x** is large: D = N. areas $\times N$. charger types $\simeq 1,000$. \Rightarrow Number of observations $= O(D^2) \sim 1,000,000$, computationally costly!

Solution algorithm:

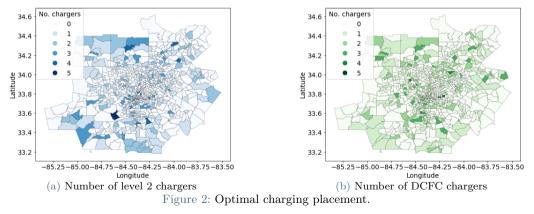
Random embedding Bayesian optimization (\mathbf{REMBO})

Regional charging station placement: case study

Case study: Atlanta metropolitan area

- BEV market size: 5,000 30,000
- 21,504 113,569 daily commute trips
- Home charging: 0.13 kWh, 3.6 kW
- Number of areas: 951 census tracts
- Public charging: 0.43 (kWh, 2 type chargers

Table 2: Parameters of public charging options.


Charging mode		Charging rate (kW)		Purchase cost (\$/unit)		Installation cost (\$/unit)		
Level 2 DCFC		$6.2 \\ 150$		$3450 \\ 25000$		$3000 \\ 21000$		_
								_
RODUCTION	Research qu OO	ESTIONS	Methodology 00	Case study •000	Conclusion & fut 000	URE RESEARCH PLAN	Q & A 0	8/15

Optimal charging station placement

Base case: 30,000 BEV, 591 areas.

- Number of level 2 chargers: 579; number of DCFC chargers: 553
- Best observed NPV mean: 30.9 M\$

[ethodolog

Case study

Conclusion & future research pla

Q & A

BEV CHARGING STATION PLACEMENT

Effect of charging behavior

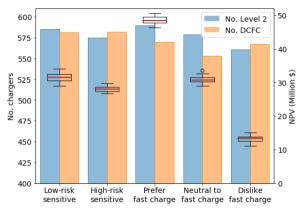


Figure 3: Optimal EVCS placements and NPVs for scenarios with different charging behaviors.

- The optimal number of chargers is not sensitive to users' behaviors.
- Users' preferences to fast charging can significantly affect the optimal NPV.

RESEARCH QUESTIONS

Method

GY

Case study

Conclusion & future research plan

Q & A

Effect of BEV market size

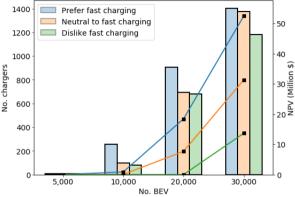


Figure 4: Optimal total number of chargers and NPVs for increasing BEV market size.

- The optimal number of charging infrastructure is highly related to the size of BEV market.
- The break-even BEV market size the smallest market size that the EVCS project starts to be profitable can be as small as 10,000.
- Users' charging preference can significantly affect the break-even BEV market size.

Research questi

Meth

DOLOGY

Case study 0000 Conclusion & future research plan

Q & A O

Discussion

- Both level 2 and DCFC chargers should be considered in the public charging station placement planning. In an optimal charging station placement, similar number of level 2 and DCFC chargers are needed to satisfy various demands.
- In an optimal charging station placement, small quantities of level 2 and DCFC chargers are scattered in areas that have a high number of parked vehicles.
- The BEV market size is the main factor deciding the optimal total number of charging infrastructure, which determines the initial investment budget of charging infrastructure.
- The profitability of charging infrastructure is not only related to the BEV market size but also users' preference for fast charging.
- The break-even market size can be as low as 10,000 BEVs if users prefer fast charging.

HODOLOGY

Future research

Charging demand estimation

- Charging behavior prediction (if charging behavior data in a mature market is available)
- Long distance trip charging demand estimation
- More accurate spatial demand distribution (if travel behavior model is available: e.g. if GPS data of general BEV users is available)

Life-cycle zero-emission system design of BEV charging supply

- Integrated charging infrastructure and renewable electricity generation
 - $\cdot\,$ Charging infrastructure planning
 - $\cdot\,$ Zero-emission electricity supply (e.g. photovoltaic field)
 - $\cdot\,$ Energy storage system (e.g. vehicle to grid)

- Propose an activity-based BEV charging demand simulation model
- Estimate high-resolution spatio-temporal BEV charging demand.
- Propose a charging station placement model by activity-based demand
- Propose a solution algorithm by REMBO which allows quantitatively evaluate the uncertainty of the optimal values.
- Find the optimal placement and best NPV of charging infrastructure.

INTRODUCTION

Researd

UESTIONS

ETHODOLOGY

Case study

Conclusion & future research plan

Q & A 0

Thanks!

Q & A

Conclusion & future research plan

Q & A